Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2047, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440538

RESUMO

The genus Quercus, which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak, Quercus lobata, revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments.


Assuntos
Quercus , Evolução Biológica , Metilação de DNA/genética , Epigenoma , Evolução Molecular , Humanos , Quercus/genética
2.
Sci Rep ; 11(1): 24013, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907249

RESUMO

What we mean by species and whether they have any biological reality has been debated since the early days of evolutionary biology. Some biologists even suggest that plant species are created by taxonomists as a subjective, artificial division of nature. However, the nature of plant species has been rarely tested critically with data while ignoring taxonomy. We integrate phenomic and genomic data collected across hundreds of individuals at a continental scale to investigate this question in Escallonia (Escalloniaceae), a group of plants which includes 40 taxonomic species (the species proposed by taxonomists). We first show that taxonomic species may be questionable as they match poorly to patterns of phenotypic and genetic variation displayed by individuals collected in nature. We then use explicit statistical methods for species delimitation designed for phenotypic and genomic data, and show that plant species do exist in Escallonia as an objective, discrete property of nature independent of taxonomy. We show that such species correspond poorly to current taxonomic species ([Formula: see text]) and that phenomic and genomic data seldom delimit congruent entities ([Formula: see text]). These discrepancies suggest that evolutionary forces additional to gene flow can maintain the cohesion of species. We propose that phenomic and genomic data analyzed on an equal footing build a broader perspective on the nature of plant species by helping delineate different 'types of species'. Our results caution studies which take the accuracy of taxonomic species for granted and challenge the notion of plant species without empirical evidence. Note: A version of the complete manuscript in Spanish is available in the Supplemental Materials.


Assuntos
Evolução Molecular , Genômica , Magnoliopsida/classificação , Magnoliopsida/genética , Filogenia , Especificidade da Espécie
3.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607943

RESUMO

Climatic oscillations during the Pleistocene played a major role in shaping the spatial distribution and demographic dynamics of Earth's biota, including our own species. The Last Interglacial (LIG) or Eemian Period (ca. 130 to 115 thousand years B.P.) was particularly influential because this period of peak warmth led to the retreat of all ice sheets with concomitant changes in global sea level. The impact of these strong environmental changes on the spatial distribution of marine and terrestrial ecosystems was severe as revealed by fossil data and paleogeographic modeling. Here, we report the occurrence of an extant, inland mangrove ecosystem and demonstrate that it is a relict of the LIG. This ecosystem is currently confined to the banks of the freshwater San Pedro Mártir River in the interior of the Mexico-Guatemala El Petén rainforests, 170 km away from the nearest ocean coast but showing the plant composition and physiognomy typical of a coastal lagoon ecosystem. Integrating genomic, geologic, and floristic data with sea level modeling, we present evidence that this inland ecosystem reached its current location during the LIG and has persisted there in isolation ever since the oceans receded during the Wisconsin glaciation. Our study provides a snapshot of the Pleistocene peak warmth and reveals biotic evidence that sea levels substantially influenced landscapes and species ranges in the tropics during this period.


Assuntos
Camada de Gelo , Rhizophoraceae/crescimento & desenvolvimento , Elevação do Nível do Mar , Áreas Alagadas , Clima , Mudança Climática , Meio Ambiente , Variação Genética/genética , Guatemala , México , Rhizophoraceae/genética
4.
New Phytol ; 230(3): 1228-1241, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33460447

RESUMO

There are multiple hypotheses for the spectacular plant diversity found in deserts. We explore how different factors, including the roles of ecological opportunity and selection, promote diversification and disparification in Encelia, a lineage of woody plants in the deserts of the Americas. Using a nearly complete species-level phylogeny based on double-digest restriction-aided sequencing along with a broad set of phenotypic traits, we estimate divergence times and diversification rates, identify instances of hybridization, quantify trait disparity and assess phenotypic divergence across environmental gradients. We show that Encelia originated and diversified recently (mid-Pleistocene) and rapidly, with rates comparable to notable adaptive radiations in plants. Encelia probably originated in the hot deserts of North America, with subsequent diversification across steep environmental gradients. We uncover multiple instances of gene flow between species. The radiation of Encelia is characterized by fast rates of phenotypic evolution, trait lability and extreme disparity across environments and between species pairs with overlapping geographic ranges. Encelia exemplifies how interspecific gene flow in combination with high trait lability can enable exceptionally fast diversification and disparification across steep environmental gradients.


Assuntos
Asteraceae , Hibridização Genética , Evolução Biológica , Fluxo Gênico , América do Norte , Filogenia
5.
Genomics ; 113(1 Pt 1): 183-192, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326831

RESUMO

Chloroplast (cp) genomes are considered important for the study of lineage-specific molecular evolution, population genetics, and phylogenetics. Our aim here was to elucidate the molecular evolution in cp genomes of species in the Dracunculus clade (Aroideae, Araceae). We report de novo assembled cp genomes for eight species from eight genera and also retrieved cp genomes of four species from the National Center for Biotechnology Information (NCBI). The cp genomes varied in size from 162,424 bp to 176,835 bp. Large Single Copy (LSC) region ranged in size from 87,141 bp to 95,475 bp; Small Single Copy (SSC) from 14,338 bp to 23,981 bp; and Inverted Repeats (IRa and IRb) from 25,131 bp to 32,708 bp. The expansion in inverted repeats led to duplication of ycf1 genes in four species. The genera showed high similarity in gene content and yielded 113 unique genes (79 protein-coding, 4 rRNA, and 30 tRNA genes). Codon usage, amino acid frequency, RNA editing sites, microsatellites repeats, transition and transversion substitutions, and synonymous and non-synonymous substitutions were also similar across the clade. A previous study reported deletion of ycf1, accD, psbE, trnL-CAA, and trnG-GCC genes in four Amorphophallus species. Our study supports conservative structure of cp genomes in the Dracunculus clade including Amorphophallus species and does not support gene deletion mentioned above. We also report suitable polymorphic loci based on comparative analyses of Dracunculus clade species, which could be useful for phylogenetic inference. Overall, the current study broad our knowledge about the molecular evolution of chloroplast genome in aroids.


Assuntos
Araceae/genética , Evolução Molecular , Genoma de Cloroplastos/genética , Araceae/classificação , Uso do Códon , Dosagem de Genes , Repetições de Microssatélites , Anotação de Sequência Molecular , Filogenia
6.
J Mol Evol ; 88(7): 562-574, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32642873

RESUMO

The subfamily Pothoideae belongs to the ecologically important plant family Araceae. Here, we report the chloroplast genomes of two species of the subfamily Pothoideae: Anthurium huixtlense (size: 163,116 bp) and Pothos scandens (size: 164,719 bp). The chloroplast genome of P. scandens showed unique contraction and expansion of inverted repeats (IRs), thereby increasing the size of the large single-copy region (LSC: 102,956 bp) and decreasing the size of the small single-copy region (SSC: 6779 bp). This led to duplication of many single-copy genes due to transfer to IR regions from the small single-copy (SSC) region, whereas some duplicate genes became single copy due to transfer to large single-copy regions. The rate of evolution of protein-coding genes was affected by the contraction and expansion of IRs; we found higher mutation rates for genes that exist in single-copy regions as compared to those in IRs. We found a 2.3-fold increase of oligonucleotide repeats in P. scandens when compared with A. huixtlense, whereas amino acid frequency and codon usage revealed similarities. The ratio of transition to transversion mutations was 2.26 in P. scandens and 2.12 in A. huixtlense. Transversion mutations mostly translated in non-synonymous substitutions. The phylogenetic inference of the limited species showed the monophyly of the Araceae subfamilies. Our study provides insight into the molecular evolution of chloroplast genomes in the subfamily Pothoideae and family Araceae.


Assuntos
Araceae/genética , Genoma de Cloroplastos , Sequências Repetidas Invertidas , Evolução Molecular , Filogenia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
7.
Plants (Basel) ; 9(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545339

RESUMO

The chloroplast genome provides insight into the evolution of plant species. We de novo assembled and annotated chloroplast genomes of four genera representing three subfamilies of Araceae: Lasia spinosa (Lasioideae), Stylochaeton bogneri, Zamioculcas zamiifolia (Zamioculcadoideae), and Orontium aquaticum (Orontioideae), and performed comparative genomics using these chloroplast genomes. The sizes of the chloroplast genomes ranged from 163,770 bp to 169,982 bp. These genomes comprise 113 unique genes, including 79 protein-coding, 4 rRNA, and 30 tRNA genes. Among these genes, 17-18 genes are duplicated in the inverted repeat (IR) regions, comprising 6-7 protein-coding (including trans-splicing gene rps12), 4 rRNA, and 7 tRNA genes. The total number of genes ranged between 130 and 131. The infA gene was found to be a pseudogene in all four genomes reported here. These genomes exhibited high similarities in codon usage, amino acid frequency, RNA editing sites, and microsatellites. The oligonucleotide repeats and junctions JSB (IRb/SSC) and JSA (SSC/IRa) were highly variable among the genomes. The patterns of IR contraction and expansion were shown to be homoplasious, and therefore unsuitable for phylogenetic analyses. Signatures of positive selection were seen in three genes in S. bogneri, including ycf2, clpP, and rpl36. This study is a valuable addition to the evolutionary history of chloroplast genome structure in Araceae.

8.
Planta ; 251(3): 72, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32112137

RESUMO

MAIN CONCLUSION: This study provides broad insight into the chloroplast genomes of the subfamily Monsteroideae. The identified polymorphic regions may be suitable for designing unique and robust molecular markers for phylogenetic inference. Monsteroideae is the third largest subfamily (comprises 369 species) and one of the early diverging lineages of the monocot plant family Araceae. The phylogeny of this important subfamily is not well resolved at the species level due to scarcity of genomic resources and suitable molecular markers. Here, we report annotated chloroplast genome sequences of four Monsteroideae species: Spathiphyllum patulinervum, Stenospermation multiovulatum, Monstera adansonii, and Rhaphidophora amplissima. The quadripartite chloroplast genomes (size range 163,335-164,751 bp) consist of a pair of inverted repeats (25,270-25,931 bp), separating a small single copy region (21,448-22,346 bp) from a large single copy region (89,714-91,841 bp). The genomes contain 114 unique genes, including four rRNA genes, 80 protein-coding genes, and 30 tRNA genes. Gene features, amino acid frequencies, codon usage, GC contents, oligonucleotide repeats, and inverted repeats dynamics exhibit similarities among the four genomes. Higher rate of synonymous substitutions was observed as compared to non-synonymous substitutions in 76 protein-coding genes. Positive selection was observed in seven protein-coding genes, including psbK, ndhK, ndhD, rbcL, accD, rps8, and ycf2. Our included species of Araceae showed the monophyly in Monsteroideae and other subfamilies. We report 30 suitable polymorphic regions. The polymorphic regions identified here might be suitable for designing unique and robust markers for inferring the phylogeny and phylogeography among closely related species within the genus Spathiphyllum and among distantly related species within the subfamily Monsteroideae. The chloroplast genomes presented here are a valuable contribution towards understanding the molecular evolutionary dynamics in the family Araceae.


Assuntos
Araceae/classificação , Araceae/genética , Evolução Molecular , Genes de Plantas/genética , Genoma de Cloroplastos/genética , Filogenia , Composição de Bases , Sequência de Bases , Cloroplastos/genética , Uso do Códon , DNA de Plantas , Genes de RNAr , Componentes Genômicos , Tamanho do Genoma , Anotação de Sequência Molecular , Fases de Leitura Aberta , Folhas de Planta/genética , Proteínas de Plantas/genética , Polimorfismo Genético , RNA de Transferência/genética
9.
Genomics ; 112(3): 2349-2360, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31945463

RESUMO

Aroideae is the largest and most diverse subfamily of the plant family Araceae. Despite its agricultural and horticultural importance, the genomic resources are sparse for this subfamily. Here, we report de novo assembled and fully annotated chloroplast genomes of 13 Aroideae species. The quadripartite chloroplast genomes (size range of 158,177-170,037 bp) are comprised of a large single copy (LSC; 75,594-94,702 bp), a small single copy (SSC; 12,903-23,981 bp) and a pair of inverted repeats (IRs; 25,266-34,840 bp). Notable gene rearrangements and IRs contraction / expansions were found for Anchomanes hookeri and Zantedeschia aethiopica. Codon usage, amino acid frequencies, oligonucleotide repeats, GC contents, and gene features revealed similarities among the 13 species. The number of oligonucleotide repeats was uncorrelated with genome size or phylogenetic position of the species. Phylogenetic analyses corroborated the monophyly of Aroideae but were unable to resolve the positions of Calla and Schismatoglottis.


Assuntos
Araceae/genética , Evolução Molecular , Genoma de Cloroplastos , Aminoácidos/análise , Araceae/classificação , Uso do Códon , Genes de Cloroplastos , Sequências Repetidas Invertidas , Oligonucleotídeos/química , Filogenia
10.
Front Genet ; 11: 610838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552129

RESUMO

The co-occurrence among single nucleotide polymorphisms (SNPs), insertions-deletions (InDels), and oligonucleotide repeats has been reported in prokaryote, eukaryote, and chloroplast genomes. Correlations among SNPs, InDels, and repeats have been investigated in the plant family Araceae previously using pair-wise sequence alignments of the chloroplast genomes of two morphotypes of one species, Colocasia esculenta belonging to subfamily Aroideae (crown group), and four species from the subfamily Lemnoideae, a basal group. The family Araceae is a large family comprising 3,645 species in 144 genera, grouped into eight subfamilies. In the current study, we performed 34 comparisons using 27 species from 7 subfamilies of Araceae to determine correlation coefficients among the mutational events at the family, subfamily, and genus levels. We express strength of the correlations as: negligible or very weak (0.10-0.19), weak (0.20-0.29), moderate (0.30-0.39), strong (0.40-0.69), very strong (0.70-0.99), and perfect (1.00). We observed strong/very strong correlations in most comparisons, whereas a few comparisons showed moderate correlations. The average correlation coefficient was recorded as 0.66 between "SNPs and InDels," 0.50 between "InDels and repeats," and 0.42 between "SNPs and repeats." In qualitative analyses, 95-100% of the repeats at family and sub-family level, while 36-86% of the repeats at genus level comparisons co-occurred with SNPs in the same bins. Our findings show that such correlations among mutational events exist throughout Araceae and support the hypothesis of distribution of oligonucleotide repeats as a proxy for mutational hotspots.

11.
Cladistics ; 32(2): 160-178, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34736309

RESUMO

Past phylogenetic studies of the monocot order Alismatales left several higher-order relationships unresolved. We addressed these uncertainties using a nearly complete genus-level sampling of whole plastid genomes (gene sets representing 83 protein-coding and ribosomal genes) from members of the core alismatid families, Tofieldiaceae and additional taxa (Araceae and other angiosperms). Parsimony and likelihood analyses inferred generally highly congruent phylogenetic relationships within the order, and several alternative likelihood partitioning schemes had little impact on patterns of clade support. All families with multiple genera were resolved as monophyletic, and we inferred strong bootstrap support for most inter- and intrafamilial relationships. The precise placement of Tofieldiaceae in the order was not well supported. Although most analyses inferred Tofieldiaceae to be the sister-group of the rest of the order, one likelihood analysis indicated a contrasting Araceae-sister arrangement. Acorus (Acorales) was not supported as a member of the order. We also investigated the molecular evolution of plastid NADH dehydrogenase, a large enzymatic complex that may play a role in photooxidative stress responses. Ancestral-state reconstructions support four convergent losses of a functional NADH dehydrogenase complex in Alismatales, including a single loss in Tofieldiaceae.

12.
Mol Phylogenet Evol ; 75: 91-102, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24594061

RESUMO

The biogeography, chromosome number evolution, pollination biology and evolutionary history of the plant family Araceae have recently become much clearer (Cabrera et al., 2008; Chartier et al., 2013; Cusimano et al., 2011, 2012; Nauheimer et al., 2012). However, phylogenetic ambiguity near the root of the tree precludes answering questions about the early evolution of the family. We use Illumina sequencing technology and reference based assembly to resolve the remaining questions in the deep phylogeny of Araceae. We sampled 32 genera and obtained 7 from GenBank (including an outgroup), representing 42 of 44 major clades described in Cusimano et al. (2011). A subsequent phylogenomic analysis based on mitochondrial data was performed to test congruence between plastid and mitochondrial data for phylogenetic inference. Plastid sequences produced strongly supported phylogenies. In contrast, mitochondrial phylogenies were weakly supported and incongruent with chloroplast data (Templeton test, p⩽0.0001), although several smaller clades were recovered. New strongly-supported clades seen here are: (1) Anubias and Montrichardia, excluding Calla, form a clade that is sister to the Zantedeschia clade; (2) the South African genus Zantedeschia is sister to the Old World Anchomanes clade; and (3) within the Zantedeschia clade, Philodendron is sister to the rest. Calla and Schismatoglottis form a clade at the base of one of two major clades in Aroideae based on complete chloroplast sequences. Although statistical support is weak, morphological and cytological features support this topology.


Assuntos
Araceae/classificação , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Evolução Molecular , Filogenia , Araceae/genética , Teorema de Bayes , DNA de Plantas/genética , Funções Verossimilhança , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...